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OPTIMAL TRANSFER IN THE EQUATORIAI. PLANE OF AN AXISYMMETRIC PLANET
WITH AN ADDITICONAL CLAIM OF ACCURACY
A. N. Kovalenko

In éonformity with the general theory of problem solving for /19
optimization of pulsed transfers in studies {1]-{3] using the me-
thods stated in the works of V. S. Novoselov [3]-[5], a closed sys-
tem of 22 equations is derived to define the energetically opti-
mal realization of a two-pulse transfer between elliptical orbits
in the equatorial plane of an axisymmetric planet, with a correc¥®
tion for accuracy. The corrections for accuracy of performing the
transfer are on the order of one less than the total energy con-
sumption. This system can be used to specify already existing
optimal simulated transfer between plane orbits.

1. Several Relationships Employed
The minimized functional of this study appears in the form

et R s P
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YV VHS VRLVVE +V%z+§1 Pal) (1)
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where Vll' VlZ are proijections of the characteristic velocity Vl

onto the radius-vector and transversal for the first pulse;vzl,

Vy, are the corresponding values of the second pulse; ¢, are the
dispersions of the next wvwalues in a finite orbit: radial and trans-
versal constituents of velocities V.. and v¢ ; the values of the

radius-vector r and the angle ¢ measured from some stationary di-

rection; Pi -— weighted coefficients.

The wvalues Ui are, apparently, functions of the dispersion /20

2 . . .
o~ for values.vll, Vlz' V21, V22 (we assume it to be identical
for all four characteristic velocities), and of the parameters of

the transitional orbit and the force field. By analogy to study

2

. . 2 .
[4], we can derive a connection between ¢ and o™: ' [sic]
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Here and henceforth, the index 'minus' will denote the value at
the start of the transitional ellipsej.th& index 'plus’--the end
of the transitional ellipse. Isochronous derivatives on the right
side of (2) for Keplerian motion exist in study [6], while for the
case of the equatorial plane of an axisymmetric planet--in study
[(71.

The derivation of some equations of the system produced by
us coincides with the statemeng, for instance, of study [3]. This
derivation of eight limiting conditions using another two equalities
for r.r r, (the index 'i' from now on signifies the value at the
initial orbit at the instant immediately before the pulse, the in-
dex 'u'--in the ultimate orbit at the instant immediately follow-
ing the pulse) are the same as four equalities derived from the
condition of discontinuity of Lagrange coefficients where, it is
true, the cocefficients themselves must be selected for an axi-~
symmetric planet from study [8]. :

These coefficients for an equatorial plane of this planet
can have the form
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Here A, B, C, D are arbitrary constants, subject to definition:
I, J, K are Louden functions equal to ([8]:
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Moreover in {3)-(4) the following customary notédtions are employed:
e, p, f[~--eccentricity, the parameter and agitated true anomaly;
Kz--constant of gravitation; a--small dimensionless parameter, de-~
scribing the nonsphericity of the planet; t-~current time; to——
some initial epoch for which the limiting osculating orbits are
given; the values without an index are related to the transitional
ellipse and correspond to time t; tﬁ—-time of passage through the

pericenter; re-—equatorial radius of the planet.

Otherwise, the derivation of these 14 equations contains
nothing novel and will not be discussed. Let us write only the
general equations associated with it and employed henceforth--
those which describe the osculating ellipse {9]:
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Here w is the angular distance of the pericenter; M--the average

anomaly.

™~
)
N

2. Discussion of the Conditiongpfﬁ

Transversality

The condition of transversality is the most important part
of the derivation of a system of equations. According to [2], [4]

it is written as
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The arbitrary motion along the limiting orbits is assumed. The
problem consists of deriving from (6) finite relationships which
can be done by switching to a set of independent variations. We

will prove that these can be Ati, Atu, Af ., Afu. Let us consider

a point in the initial orbit. Because we ;re not considering con-
crete motion, we are free to arbitrarily select the time of the
first pulse ti and fi—-the true anomaly of the start. From a |
point in the field of gravitation of the axisymmetric (and spher-
‘ical) planet--and having selected ti and fi' we fixed that point--
we can find a two-parameter family of ellipses. Let us now select
tu' and thereby we fix the ultimate ellipse and time of flyback
tu -ty And having selected fu' we derive the second point in the
‘plane; two the two points in the force field under investigation
passes only one or more trajectories with a prescribed flyback
time ty, ~ ti'

Theréfore, it has been shown that the assignment of ti’ tu'
£,, £, defines all other variables in (6):r;, r , e, p, £, £,

4



Let us note that in the case of a central field, due to the
immobility of the limiting orbits, we do not have to fix t, and
the number of independent variables decreases to three: fi' fu'

t - t, =T.
u i .

et us reveal the condition of transversality of {6), using

{5) and moving over to ti' tu' fi' fu:
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The expressions for Ati,Atu, Afi, Afu are equal to zero with res-

‘péct to the independence of variations, respectively.

Let us study the expressions

D L B R T
Ok G e ofe

The value ci according to (2) and study [7] is a function of the

. - +
variahles ti' tu' e, p;, £, £ .
Hence we can write the equalities
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The question arises on the derivation of the following matrix
of derivatives:
”6pe £ f+

ar i‘u fu fx o ¥

A

Let us first calculate this matrix for the case of Keplerian
motion. According to the remark on pages 4-5, let us examine three

independent variables.

To calculate this matrix directly, we must know four relation-
. . . - +
ships connecting the variables p, e, £ , £ , T, fi and fu‘ They

are

R

Frfrmoct fmoi—fu | AT,
KRS !‘S (I+ecos fp 32 -
) | (9)
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P "11__“——2,( os 7o (1--ecos fF), ‘- pP= W (1+e cosf‘

Here the first relationship is the eguality of the angular range
of flyback to the difference of angles of the finish and start ‘
points from some direction; the second equality is the dhtegrated
integral of_areas in which is posited f = f+, t = tu' then £ =
=f, t= t' and the second is subtracted from the first; the
third and fourth equalities are a description of the condition

+

r =r_ andr =T,.
u i

Let us differentiate (9) with respect to Tu

ﬂf+. 6f~ .0
ar or ! -
P R AT
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Here, in the second equation, the possibility is empldyed of re-
moving 9e/3T from beneath the integral sign invview of the fact
that e = e(f,, fu' T) is not a function of f. The system produced

is linear with respect to the unknowns .0f% 3/~ e  dp | /24
87’ Tor’ @F’ ar |

—— -

and is easily solved:
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Here the notations are used:
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T Fx u ry
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Let us differentiate (9) with respect to fi
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Solving this system we find that



. " i | o
'%f}r_—--;—{ [rﬁUﬁQPQ(W+—~W_)e st;:_: -—I—%RT 9_@%%‘
7 ‘.‘ 3 Tcos f+ W+ —W-

_-._p—eﬂ slﬂfn (_'K p”ﬁ 2p2 e )] ,
S [ Wy Ly

e sin ftcos f—
T 12 -

3
2 P
V4 . Tcos f+ o W—W-

__Ee!,smf,, (——~£. P —2p ~ ) .
. de [ 3 Te? - —
T e [~§— v sin f= sin f*—e (resin f7—r, smfﬂ———

r2 rx 3 1-7‘

| —%eusmf,.( Al 3 + T esmf“’)]

T _)!_(_ {Qp'-’ (W —W-)e?sin f~ sin f+-—e (r2sin f~cos f+ —
A sin f+ cos f~) — ;f’; Py sin f, [(Fi—r8) cos f+
+ 2pfesin fr(WH— W')!} ,

' : (11)

where X is the denominator in (10).

Differentiating (9) with re- /25
spect to £

u and solving the derived system, we f£find that
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FE
Formulas (10), (11), (12) produce the matrix uﬁpe Fof UK

oT. fu fx
for Keplerian motion. Because the derivatives appearing in this
matrix, according to (8), (2), (7) will be multiplied by Pioz, it

is sufficient to know it for Keplerian motion and for the soclution



of the problem with accuracy to within the first negative power.
Moreover, we can indicate a means of calculating the matrix

|| 2 et f‘ﬂ} \

i P b0 Tw 7x || even for flyback in the eguatorial plane of an axi-
symmetric planet. For this purpose, we must differentiate instead

of (9) the analogous equations in a new force field:

.f+'+a(tx tn) = 7;2 (1 32)3"2 f‘

-r.ra

=+ & (i fo) 7;2 (1'_-81)3!2_(950'!‘ fx"_

_a(fn 0) 713 (1 eﬂ)aﬂ'—f
s

df- r2
w ::;2 [ E_"'_tu+ dpz (1 —82);12 ('tu:-—f}‘) ] ,

p(1+egcos f)=py(1+ecosf+),
p(14eqcos fi)=p.(1+ecosf).

The linear systems obtained after differentiation are solved with /26
respect to the terms of the wiknown matrix.
The knowledge of the matrix lg%%f;j%ajk(or the matrix’
r;p,e.f‘,_f"'li‘f )
dldﬂfmfx l ), makes it possible to derive from the condition
of transversality in the form of (6) finite relationships for the
arbitrary coplar elliptical orbits in the central field, and also
for elliptical orbits in the equatorial plane of an axisymmetric
planet.
3. Writing the System of Egquations
Let us return to {(7) and write the finite relationships
mentioned on its basis and on the basis of (8).
Equating the bracket to zero at At. produces
—H= EP, L +0f sz o +a" 2,0,
(13)
9

0f4 N
+ dt Epi 6]’- —|' EP‘ d_f+ 5(.141 Pm (1_35)3.'2



the bracket at to--

H = ZP: ) EP:M ﬂfE -t

E’f'i" x,
+2 at ZPi e Epiaﬁ + ek Lo  (l—elp,

N (14)
the bracket at fi'—
JE; 4;a4%i4_iﬁ_§2p 99 jSP +
o Fa = de 1 9 tap Idf"
-kla—Tu-eﬂ_51nf,,+l”)—9, (15)
the bracket at fu-'
.
,;}e PG "‘ EPi zpfaf-
"f+EP1 aF F e p cos fe— —Mxe, pt? sin f+
3p:: Sm13+4i;0: - : (16)

In equations (13)-(16), the derivatives of Gi are calculated in /27
terms of (2) and study [7]; the derivatives of e, p, £, and f+
are calculated for the case of Keplerian motion according to (10)-

(12): the lLagrange coefficients are taken from (3} with the cor-

responding indexes 'i' and 'u'.

Herein we must add the value of H, calculated according to its
definition (cf. [8]):

L H=—xepCy - (17)

10



Let us add to (13)-(17) the remaining conditions of optimal fly-

back.
The limiting conditions:
: mf;;.u—”2 51nf‘—xe,,p—”251an Vy -V cosg,, !
mep—”2 smf+ xe p—”zsmf = :”“l/_?z é_:t}é 9, |
ap it —aplrr =V, sind, i
AP e = Vising, |

i pu(ltecosfi=p(+e,cosf. |

- pe(iFecosfH=pliteccosfy. |
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h e T Rt o e i T
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e e e
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TSP ECas L

(18)

(19)

(20)

(21)

(22)

- {23)

{24)

(25)

(26)

(27)

Here y,, ¥, are the angles between Vl, Vz and the radius-vector.

The conditions of discontinuity of the Lagrange coefficients:

e e
————

Acosf—+Be gin f~4-Cf—— ( f) 2 32( %62)”2. X/
p

X (384 155 = cosy,

(28)
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The cohnection of time with the true anomaly is given through the /28

introduction of eccentric anomaly E and the Kepler equation:

B L

’ - y ol - ’ _ . -
e = )mtg%fg_- \ : (32)
Y E‘"‘ _” l—e ,\-:1;2 f* i
: tg-?_-__(A l'ff*}ftg__,—f’ l ‘ (33)
E*;E sin E¥ = T
_E ‘—e Slﬂ E_+G“ (t R) 7}2 (1 82)2 ;;_:;'T (1 _32)3}2 (tk_tll}'\ )
’ \ T .‘ N v 7 (34)

The system (13)-(34) is a system of 22 equations with 22 unknowns:

p' e, B, .f—' .f+'=‘:_fm fx? rH! M Vh Vﬂ» \
b b A, B, C, D, H, b b BT B

Some values in {13)=~{34) are small, which is gquite useful in de-
riving the system. The correction for accuracy
12



is small versus the total energy losses and this circumstance
is useful in deriving formulas (2). Alsc small is the parameter
of nonsPhéricity o, which is used in several places in section

1 for derivation of formulas (3), (5) and others.

But if in (2) and (5) we assume the values ki' e, p, w, M
calculated with accuracy to within the first negative power ex-
clusively, then we must consider the wvalue oa(tu - to) and not o
to be small, for otherwise its contribution to the first power in
these values bears a more complete accolint of nonsphericity than
is done in this study (axisymmetric planet). The last comment
excludes the use, within the framework of this study, of the
alluring selection of such moment ti {oxr tu) at which the limit-
ing orbits will come into coaxial juxtaposition, affording energy
savings. .

Being transcendental, system (13)~(34) is extremely diffi-
cult for general solution. We now do not even know its solution
under the assumption o = 0, Pi = 0. The gquestion arises as to
the expediency of deriving such a system. Here we can indicate
the importance of using it to specify existing optimal simulated
transfer. That is, assuming we know the zero approximation found
numerically or otherwise, and substituting this in (13)~(34), we
produce ‘the problem of a precision derivation near the given
simulated transfer of a second, less error-sensitive transfer for
implementing the pulses. In this context, it is also possible to
account for nonsphericitﬁh In addition to the concrete derivation
of this solution, the problem of a general study of thefﬂéi@hbor~
hood of the given simulated transfer for accuracy of implementa- L
tion is possible, also using system (13)-(34). The concrete exe- /29
cution of such precision is most simple to demonstrate in the

neighborhood of the Homann ellipse.
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